Preliminary communication

The reaction of dodecacarbonyltriruthenium with bicyclo[3.2.1]-2,6octadiene

A.J.P. DOMINGOS^{*}, B.F.G. JOHNSON and J. LEWIS^{**}

University Chemical Laboratory, Lensfield Road, Cambridge CB2 1EW (Great Britain) (Received February 7th, 1972)

The ability of dodecacarbonyltriruthenium to abstract hydrogen from a range of organic molecules has been previously documented^{1,2}. In this communication we present an example of hydride ion abstraction from a cyclic diolefin by this carbonyl to yield a complex in which a novel bonding pattern is observed between the olefin and the metal cluster.

Dodecacarbonyltriruthenium reacts with bicyclo [3.2.1] -2,6-octadiene in benzene under reflux to produce a yellow complex which has been characterised by analytical and spectroscopic techniques as the dihydride $H_2 Ru_3(CO)_9(C_8 H_8)$. In this molecule the organic molety is complexed to the metal cluster by two metal-carbon σ -bonds and one metal-olefin bond (see Fig. 1) $\star\star\star\star$. The remaining double bond is not coordinated to the cluster. The major evidence for this structure stems from the 100 MHz¹ H NMR spectrum which exhibits the following features at 30°: a broad doublet at τ 3.96 (1H, H₂), a broad doublet at τ 4.70 (1H, H₃), a complex multiplet at τ 7.13 (2H, H₁ and H₅); two four line multiplets centred at τ 7.70 (1H, H₄ α), a doublet at τ 8.08 (1H, H₄ β), a doublet at τ 8.11 (1H, $H_{8\alpha}$) a doublet of triplets at τ 8.69 (1H, $H_{8\beta}$) and finally a broad resonance at τ 28.3 (2H, bridging hydrides) $(J_{12}, 5.5; J_{23}, 10.0; J_{34}, 3; J_{4\alpha4\beta}, 18.7; J_{4\alpha5}, 4.5; J_{18\alpha} \text{ and } J_{58\alpha}$ 4.0; $J_{8\alpha\beta\beta}$, 10.5 cps). These assignments are based on double irradiation experiments and on a comparison of the 60 and 100 MHz spectra. Further confirmation is provided by the spectrum of the D_3 derivative. The presence of the two hydrido ligands is clearly indicated by the appearance of the broad resonance at τ 28.3; this separates into two well resolved doublets (τ 25.83 and 30.82) at -48° indicating the inequivalence of the hydrogens in the

J. Organometal. Chem., 36 (1972)

^AOn leave of absence from Laboratorio de Fisica e Engenharia Nucleares, Sacavem (Portugal). **Author to whom correspondence should be addressed. ***This bonding arrangement is different to that recently established in HRu₃(CO)₉(C₁₂H₁₅); a product

This bonding arrangement is different to that recently established in HRu₃(CO)₉(C₁₂H₁₅); a product generated from the reaction of cyclo-1,5,9-decatrienes with Ru₃(CO)₁₂ which involves a dehydrogenation step and the formation of a π -allyl—metal bond and two metal—carbon σ -bonds²

complex with rapid intramolecular exchange under ambient conditions ($E_a = 8.01 \pm 0.36$ kcal/mole, $\Delta S^{\ddagger} = -18.4 \pm 1.4$ e.u. (25°).) In agreement with the supposition that the second double bond is not coordinated to the cluster the chemical shifts observed for the

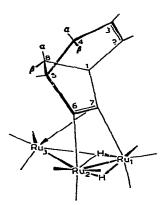


Fig. 1. Molecular structure of H₂Ru₃(CO)₉(C₈H₈).

protons H_2 and H_3 are similar to those recorded for the free diene. In the structure show each ruthenium obeys the E.A.N. rule* and it is mainly for this reason that we choose to associate the two H-ligands with Ru_1 and Ru_2 .

The formation of this complex may be viewed as an oxidative-addition of the olefinic C-H grouping to the $Ru_3(CO)_{12}$ cluster; two of the ruthenium atoms being formally oxidised to Ru^{II} . Such a reaction is obviously of some importance in studies of the isomerisation of dienes by this carbonyl and is actively under further study.

ACKNOWLEDGEMENT

We thank Johnson Matthey and Co. Ltd., Wembley, England for their generous loan of ruthenium trichloride, and also acknowledge support for this work by N.A.T.O. (A.J.P.D.).

REFERENCES

- 1 see e.g. B.F.G. Johnson, J. Lewis and I.G. Williams, J. Chem. Soc., A, (1970) 1100 and references therein.
- 2 M.I. Bruce, M.A. Cairns, A. Cox, M. Green, M.D.H. Smith and P. Woodward, Chem. Commun., (1970) 735.

 \star E.A.N. rule = effective atomic number rule.

J. Organometal. Chem., 36 (1972)